649 research outputs found

    Case Report: Ribociclib-induced phototoxicity presented as dyschromia with subsequent bullae formation

    Get PDF
    Ribociclib, a cyclin-dependent kinase 4/6 inhibitor, is a novel targeted therapy for advanced-stage breast cancer. Although ribociclib-induced cutaneous side effects have been previously noted, they have not been well documented. Herein, we present a case of ribociclib-induced phototoxicity, which manifested as dyschromia over sun-exposed forearms and neck initially and as bullae formation subsequently. A 71-year-old woman with metastatic breast cancer developed dyschromia after daily treatment with ribociclib (600 mg) for 7 months. Skin biopsy of the pigmented lesion revealed interface dermatitis with melanin incontinence and dyskeratotic cells and ballooning keratinocytes with loss of melanocytes in the basal layer. Further, clefting at the basal layer of epidermis was noted in a more hyperpigmented field. Fontana–Masson staining revealed melanophages in the dermis. Human Melanoma Black-45 staining revealed decreased melanocyte numbers in the epidermis above the cleft. Immunohistochemical analyses revealed activated CD1a+ epidermal Langerhans cells and infiltrating CD4+ and CD8+ T cells in the epidermis and dermis, thereby indicating type IV hypersensitivity that was associated with damage to keratinocytes and melanocytes. To prevent progression of bullous dermatitis, we advised the patient to discontinue ribociclib and prescribed oral and topical prednisolone. Due to the risk of phototoxicity, we educated the patient on sun-protection strategies. The patient’s skin lesions subsided during the 2 months of treatment. Phototoxicity with dyschromia is a rare but significant ribociclib-induced cutaneous side effect. Early diagnosis, rapid ribociclib withdrawal, protection from sunlight, and prompt treatment are critical for preventing subsequent severe bullous dermatosis

    Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array

    Get PDF
    Conventionally, a pulse taking platform is based on a single sensor, which initiates a feasible method of quantitative pulse diagnosis. The aim of this paper is to implement a pulse taking platform with a tactile array sensor. Three-dimensional wrist pulse signals are constructed, and the length, width, ascending slope, and descending slope are defined following the surface of the wrist pulse. And the pressure waveform of the wrist pulse obtained through proposed pulse-taking platform has the same performance as the single sensor. Finally, the results of a paired samples t-test reveal that the repeatability of the proposal platform is consistent with clinical experience. On the other hand, the results of ANOVA indicate that differences exist among different pulse taking depths, and this result is consistent with clinical experience in traditional Chinese medicine pulse diagnosis (TCMPD). Hence, the proposed pulse taking platform with an array sensor is feasible for quantification in TCMPD

    Forest Fire Occurrence and Modeling in Southeastern Australia

    Get PDF
    Forest fire is one of the major environmental disturbances for the Australian continent. Identification of occurrence patterns of large fires, fire mapping, determination of fire spreading mechanisms, and fire effect modeling are some of the best measures to plan and mitigate fire effects. This chapter describes fire occurrence in New South Wales (Australia), the Australian National Bushfire Model Project (ANBMP), fire propagation modeling methods, the McArthur’s model and current forest fire modeling approaches in the state of New South Wales of Australia. Among the established fire models, PHOENIX Rapidfire predicts fire spread and facilitates loss and damage assessments as the model considers many environmental and social variables. Two fire spread models, SPARK and Amicus, have been developed and facilitated fire spread mapping and modeling in Australia

    A Bayesian measurement error model for two-channel cell-based RNAi data with replicates

    Full text link
    RNA interference (RNAi) is an endogenous cellular process in which small double-stranded RNAs lead to the destruction of mRNAs with complementary nucleoside sequence. With the production of RNAi libraries, large-scale RNAi screening in human cells can be conducted to identify unknown genes involved in a biological pathway. One challenge researchers face is how to deal with the multiple testing issue and the related false positive rate (FDR) and false negative rate (FNR). This paper proposes a Bayesian hierarchical measurement error model for the analysis of data from a two-channel RNAi high-throughput experiment with replicates, in which both the activity of a particular biological pathway and cell viability are monitored and the goal is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting cell activity. Simulation studies demonstrate the flexibility and robustness of the Bayesian method and the benefits of having replicates in the experiment. This method is illustrated through analyzing the data from a RNAi high-throughput screening that searches for cellular factors affecting HCV replication without affecting cell viability; comparisons of the results from this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Acute Kidney Injury Biomarkers for Patients in a Coronary Care Unit: A Prospective Cohort Study

    Get PDF
    Background: Renal dysfunction is an established predictor of all-cause mortality in intensive care units. This study analyzed the outcomes of coronary care unit (CCU) patients and evaluated several biomarkers of acute kidney injury (AKI), including neutrophil gelatinase-associated lipocalin (NGAL), interleukin-18 (IL-18) and cystatin C (CysC) on the first day of CCU admission. Methodology/Principal Findings: Serum and urinary samples collected from 150 patients in the coronary care unit of a tertiary care university hospital between September 2009 and August 2010 were tested for NGAL, IL-18 and CysC. Prospective demographic, clinical and laboratory data were evaluated as predictors of survival in this patient group. The most common cause of CCU admission was acute myocardial infarction (80%). According to Acute Kidney Injury Network criteria, 28.7 % (43/150) of CCU patients had AKI of varying severity. Cumulative survival rates at 6-month follow-up following hospital discharge differed significantly (p,0.05) between patients with AKI versus those without AKI. For predicting AKI, serum CysC displayed an excellent areas under the receiver operating characteristic curve (AUROC) (0.89560.031, p,0.001). The overall 180-day survival rate was 88.7 % (133/150). Multiple Cox logistic regression hazard analysis revealed that urinary NGAL, serum IL-18, Acute Physiology, Age and Chronic Health Evaluation II (APACHE II) and sodium on CCU admission day one were independent risk factors for 6-month mortality. In terms of 6-month mortality, urinary NGAL had the best discriminatory power, the best Youden index, and the highest overall correctness of prediction

    Impaired dendritic cell maturation and IL-10 production following H. pylori stimulation in gastric cancer patients

    Get PDF
    The current study was to investigate the interaction between Helicobacter pylori and human dendritic cells (DCs). Whether impaired DC function can influence the outcome of H. pylori infections. Human monocyte-derived DCs (MDDCs) from five gastric cancer patients and nine healthy controls were stimulated with H. pylori. Maturation markers of MDDC were examined by flow cytometry. IL-10 and TNF-α released by MDDCs and IL-17 produced by T cells were measured by ELISA. Regulatory signaling pathways of IL-10 were examined by ELISA, western blotting, and chromatin immunoprecipitation assay. The results showed that as compared with healthy individuals, the maturation marker CD40 in MDDCs, IL-17A expression from T cells, and IL-10 expression from MDDCs were significantly lower in gastric cancer patients. Blocking DC-SIGN, TLR2, and TLR4 could reverse H. pylori-associated IL-10 production. Activation of the p38 MAPK and NF-kB signaling pathways concomitant with decreased tri-methylated H3K9 and increased acetylated H3 accounted for the effect of H. pylori on IL-10 expression. Furthermore, upregulated IL-10 expression was significantly suppressed in H. pylori-pulsed MDDCs by histone acetyltransferase and methyltransferase inhibitors. Taken together, impaired DC function contributes to the less effective innate and adaptive immune responses against H. pylori seen in gastric cancer patients. H. pylori can regulate IL-10 production through Toll-like and DC-SIGN receptors, activates p-p38 MAPK signaling and the transcription factors NF-kB, and modulates histone modification
    corecore